Регуляция синтеза и секреции инсулина

Инсулин: образование, секреция и действие

Регуляция синтеза и секреции инсулина

Инсулин (от лат. insula — остров) — это гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа.

Образование и секреция инсулина

Главным стимулом к синтезу и выделению инсулина служит повышение концентрации глюкозы в крови.

Синтез инсулина в клетке

Синтез и выделение инсулина представляют собой сложный процесс, включающий несколько этапов. Первоначально образуется неактивный предшественник гормона, который после ряда химических превращений в процессе созревания превращается в активную форму.

Ген, кодирующий первичную структуру предшественника инсулина, локализуется в коротком плече 11 хромосомы.

На рибосомах шероховатой эндоплазматической сети синтезируется пептид-предшественник — т.н. препроинсулин. Он представляет собой полипептидную цепь, построенную из 110 аминокислотных остатков и включает в себя расположенные последовательно: L-пептид, B-пептид, C-пептид и A-пептид.

Почти сразу после синтеза в ЭПР от этой молекулы отщепляется сигнальный (L) пептид — последовательность из 24 аминокислот, которые необходимы для прохождения синтезируемой молекулы через гидрофобную липидную мембрану ЭПР. Образуется проинсулин, который транспортируется в комплекс Гольджи, далее в цистернах которого происходит так называемое созревание инсулина.

Созревание является наиболее длительным этапом образования инсулина. В процессе созревания из молекулы проинсулина с помощью специфических эндопептидаз вырезается C-пептид — фрагмент из 31 аминокислоты, соединяющий B-цепь и A-цепь. То есть молекула проинсулина разделяется на инсулин и биологически инертный пептидный остаток.

В секреторных гранулах инсулин, соединяясь с ионами цинка, образует кристаллические гексамерные агрегаты.

Регуляция образования и секреции инсулина

Главным стимулятором освобождения инсулина является повышение уровня глюкозы в крови. Дополнительно образование инсулина и его выделение стимулируется во время приёма пищи, причём не только глюкозы или углеводов.

Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин, некоторые гормоны гастроэнтеропанкреатической системы: холецистокинин, ГИП, ГПП-1, а также такие гормоны, как глюкагон, АКТГ, СТГ, эстрогены и др., препараты сульфонилмочевины.

Также секрецию инсулина усиливает повышение уровня калия или кальция, свободных жирных кислот в плазме крови.

Понижается секреция инсулина под влиянием соматостатина.

Бета-клетки также находятся под влиянием автономной нервной системы:

    • Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина;
    • Симпатическая часть (активация ?2-адренорецепторов) подавляет выделение инсулина.

Причём синтез инсулина заново стимулируется глюкозой и холинергическими нервными сигналами.

Действие инсулина

Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов.

Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны.

Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку.

В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т.н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии.

Механизм действия

Подобно другим гормонам своё действие инсулин осуществляет через белок-рецептор.

Инсулиновый рецептор представляет собой сложный интегральный белок клеточной мембраны, построенный из 2 субъединиц (a и b), причём каждая из них образована двумя полипептидными цепочками.

Инсулин с высокой специфичностью связывается и распознаётся а-субъединицей рецептора, которая при присоединении гормона изменяет свою конформацию. Это приводит к появлению тирозинкиназной активности у субъединицы b, что запускает разветвлённую цепь реакций по активации ферментов, которая начинается с самофосфорилирования рецептора.

Весь комплекс биохимических последствий взаимодействия инсулина и рецептора ещё до конца не вполне ясен, однако известно, что на промежуточном этапе происходит образование вторичных посредников: диацилглицеролов и инозитолтрифосфата, одним из эффектов которых является активация фермента — протеинкиназы С, с фосфорилирующим (и активирующим) действием которой на ферменты и связаны изменения во внутриклеточном обмене веществ.

Усиление поступления глюкозы в клетку связано с активирующим действием посредников инсулина на включение в клеточную мембрану цитоплазматических везикул, содержащих белок-переносчик глюкозы GluT 4.

Комплекс инсулин — рецептор после образования погружается в цитозоль и в дальнейшем разрушается в лизосомах. Причём деградации подвергается лишь остаток инсулина, а освобождённый рецептор транспортируется обратно к мембране и снова встраивается в неё.

Физиологические эффекты инсулина

Инсулин оказывает на обмен веществ и энергии сложное и многогранное действие. Многие из эффектов инсулина реализуются через его способность действовать на активность ряда ферментов.

Инсулин — это единственный гормон, снижающий содержание глюкозы в крови, это реализуется через:

    • усиление поглощения клетками глюкозы и других веществ;
    • активацию ключевых ферментов гликолиза;
    • увеличение интенсивности синтеза гликогена — инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;
    • уменьшение интенсивности глюконеогенеза — снижается образование в печени глюкозы из различных веществ;
    • усиливает поглощение клетками аминокислот (особенно лейцина и валина);
    • усиливает транспорт в клетку ионов калия, а также магния и фосфата;
    • усиливает репликацию ДНК и биосинтез белка;
    • усиливает синтез жирных кислот и последующую их этерификацию — в жировой ткани и в печени инсулин способствует превращению глюкозы в триглицериды; при недостатке инсулина происходит обратное — мобилизация жиров;
    • Антикатаболические эффекты;
    • подавляет гидролиз белков — уменьшает деградацию белков;
    • уменьшает липолиз — снижает поступление жирных кислот в кровь.

Регуляция уровня глюкозы в крови

Поддержание оптимальной концентрации глюкозы в крови — результат действия множества факторов, сочетание слаженной работы почти всех систем организма. Однако главная роль в поддержании динамического равновесия между процессами образования и утилизации глюкозы принадлежит гормональной регуляции.

В среднем уровень глюкозы в крови здорового человека колеблется от 2,7 до 8,3 ммоль/л, однако сразу после приёма пищи концентрация резко возрастает на короткое время.

Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:

    1. Единственный гипогликемический гормон — инсулин;
    1. Гипергликемические гормоны (такие как глюкагон, гормон роста и адреналин), которые повышают содержание глюкозы в крови.

Когда уровень глюкозы опускается ниже нормального физиологического значения, высвобождение инсулина из B-клеток замедляется (но в норме никогда не останавливается).

Если же уровень глюкозы падает до опасного уровня, высвобождаются так называемые контринсулярные (гипергилкемические) гормоны (наиболее известный — глюкагон ?-клеток панкреатических островков), которые вызывают высвобождение глюкозы из клеточных запасов в кровь. Адреналин и другие гормоны стресса сильно подавляют выделение инсулина в кровь.

Точность и эффективность работы этого сложного механизма является непременным условием нормальной работы всего организма, здоровья.

Длительное повышенное содержание глюкозы в крови (гипергликемия) является главным симптомом и повреждающим фактором сахарного диабета. Гипогликемия — понижение содержания глюкозы в крови — часто имеет ещё более серьёзные последствия.

Так, экстремальное падение уровня глюкозы может быть чревато развитием гипогликемической комы и смертью.

Гипергликемия

Гипергликемия — увеличение уровня сахара в крови.

В состоянии гипергликемии увеличивается поступление глюкозы как в печень, так и в перефирические ткани. Как только уровень глюкозы зашкаливает, поджелудочная железа начинает вырабатывать инсулин.

Гипогликемия

Гипогликемия — патологическое состояние, характеризующееся снижением уровня глюкозы периферической крови ниже нормы (обычно, 3,3 ммоль/л). Развивается вследствие передозировки сахароснижающих препаратов, избыточной секреции инсулина в организме. Гипогликемия может привести к развитию гипогликемической комы и привести к гибели человека.

См. также

    • Углеводы и гликемический индекс
    • Инсулиноподобный фактор роста-1

Источник: http://www.shealth.ru/insulin.html

Инсулин – самый молодой гормон

Регуляция синтеза и секреции инсулина

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи.

На данном этапе в молекуле проинсулина присутствуют А-цепь, В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для “созревания” гормона .

По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина.

В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+.

Схема синтеза инсулина

Около 15% молекул проинсулина поступает в кровоток. Проинсулин обладает более слабой активностью (около 1:10), но большим периодом полувыведения (около 3:1), по сравнению с инсулином. Поэтому повышение его уровня может вызывать гипогликемические состояния, что наблюдается при инсулиномах.

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,

4. Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны,

5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку,
6. Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ3),
7. Появление ИФ3 в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле,
8. Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,
9. Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток.

 Схема внутриклеточной регуляции секреции инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и другие гормоны, нервная регуляция.

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин. Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. 

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина, секретина, гастрина, желудочного ингибирующего полипептида.

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона, АКТГ и глюкокортикоидов, эстрогенов, прогестинов. При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию.

Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α2-адренорецепторов.

С другой стороны, стимуляция β2-адренорецепторов приводит к усилению секреции.

Также выделение инсулина повышается n.vagus, в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

К лекарственным регуляторам секреции инсулина относятся производные сульфанилмочевины (глибенкламид, гликлазид) и глиниды (старликс, новонорм). Обе группы связываются с разными участками одного рецептора и блокируют АТФ-зависимые калиевые каналы, открывая Ca2+-каналы, и этим индуцируя секрецию инсулина.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты – только 40 рецепторов на клетку.

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов:

1. Активации Na+/K+-АТФазы, что вызывает выход ионов Na+ и вход в клетку ионов K+, что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na+/H+-обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H+ в обмен на ионы Na+. Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca2+-АТФазы приводит к задержке ионов Ca2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков.

Печень

  • торможение эффектов адреналина и глюкагона (фосфодиэстераза),
  • ускорение гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиление синтеза жирных кислот (ацетил-SКоА-карбоксилаза),
  • формирование ЛПОНП,
  • повышение синтеза холестерина (ГМГ-SКоА-редуктаза),

Мышцы

  • торможение эффектов адреналина (фосфодиэстераза),
  • стимулирует транспорт глюкозы в клетки (активация ГлюТ-4),
  • стимуляция гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиливает транспорт нейтральных аминокислот в мышцы,
  • стимулирует трансляцию (рибосомальный синтез белков).

Жировая ткань

  • стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • активирует запасание жирных кислот в тканях (липопротеинлипаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы),
  • создание возможности для запасания ТАГ (инактивация гормон-чувствительной-липазы).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток, например:

1. Индукция синтеза ферментов в печени

  • глюкокиназы и пируваткиназы (гликолиз),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь),

2. Индукция в адипоцитах синтеза глицеральдегидфосфат-дегидрогеназы и синтазы жирных кислот.

3. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконеогенез).

4. Обеспечивает процессы трансляции, повышая фосфорилирование по серину рибосомального белка S6.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста.

2. Увеличение роста и пролиферации клеток в синергизме с соматомединами.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Инактивация инсулина

Удаление инсулина из циркуляции происходит после его связывания с рецептором и последующей интернализации (эндоцитоза) гормон-рецепторного комплекса, в основном в печени и мышцах.

После поглощения комплекс разрушается и белковые молекулы лизируются до свободных аминокислот. В печени захватывается и разрушается до 50% инсулина при первом прохождении крови, оттекающей от поджелудочной железы.

В почках инсулин фильтруется в первичную мочу и, после реабсорбции в проксимальных канальцах, разрушается.

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Найти

Появился вопрос? Спрашиваем в группе

Общая биохимия

Источник: https://biokhimija.ru/gormony/insulin.html

Синтез инсулина: выработка, структура, механизм действия, влияние на организм, необходимая корректировка медицинскими и подручными способами

Регуляция синтеза и секреции инсулина

Инсулин (от лат. insula «остров») — полипептидный гормон поджелудочной железы, функцией которого является снабжение клеток организма энергией. Местом синтеза инсулина являются в панкреатические островки Лангерганса, их бета-клетки. Инсулин участвует в метаболизме всех клеток тканей, хотя на бытовом уровне ассоциируется лишь с диабетом.

Общие сведения

На сегодня инсулин достаточно изучен в своем строении. Выявлена связь гормона с метаболизмом белков, у диабетиков вырабатывающихся в недостаточном количестве, что ведет к раннему изнашиванию клеток. Роль инсулина в синтезе белков заключается в том, чтобы усиливать захват клетками аминокислот из крови и затем создавать из них белки.

Помимо этого, именно инсулин тормозит разложение белков в клетках. Инсулин воздействует и на липиды таким образом, что при его дефиците развивается ацидоз и атеросклероз. Почему связывают инсулин с энергией клеток? Потому что при обильной трапезе синтез инсулина заметно повышается, в клетки транспортируется сахар, и они запасают энергию.

При этом уровень глюкозы в крови снижается – это основное свойство инсулина. При избытке глюкозы инсулин преобразует ее в гликоген, который копится в печени и мышцах. Он нужен при истощении других источников энергии. Существует прямая связь инсулина и синтеза гликогена.

А уж когда и гликогена много, сахар преобразуется в жир (из 1 молекулы сахара получается 4 молекулы жира) – он откладывается на боках.

В 1869 г. в Берлине совсем еще юный, 22-летний студент-медик Пауль Лангерганс при изучении поджелудочной железы под микроскопом заметил разбросанные по железе группы клеток, позже названные островками Лангерганса.

Их роль была сначала неясна. Позже Э. Лагус заявил, что эти клетки участвуют в пищеварении. В 1889 году немецкий физиолог Оскар Минковски с ним не согласился и в доказательство удалил поджелудочную у подопытной собаки.

Помощник-лаборант Минковски заметил, что моча оперированной собаки привлекает много мух. При ее исследовании был найден сахар. Это был первый опыт, позволивший связать поджелудочную железу с диабетом.

В 1900 г. русский ученый Леонид Васильевич Соболев (1876—1919) из лаборатории И. П. Павлова экспериментально доказал, что островки Лангерганса участвуют в обмене углеводов.

Строение гормона

Инсулин человека – это белок с молекулярной массой 5808, состоящий из 51 аминокислоты, соединенных в 2 пептидные цепи: А – содержит 21, цепь В – 30 аминокислот.

Их связь поддерживается 2 дисульфидными связями. При разрушении этих мостиков гормон инактивируется. Структурируется он, как и всякий обычный белок, в В-клетках.

Некоторые животные имеют инсулин, сходный по строению с человеческим. Это позволило создать синтетический инсулин для лечения СД. Наиболее часто применяют свиной инсулин, который отличается от человеческого только одной аминокислотой.

Бычий – отличается 3 аминокислотами. Определение точной последовательности всех аминокислот в составе инсулина было сделано английским микробиологом Фредериком Сенгером. За эту расшифровку в 1958 году он получил Нобелевскую премию по химии.

Еще немного истории

Выделение инсулина для практического применения было сделано в 1923 г. учеными Торонтского университета Ф. Бантингом и Бестом, которые также получили Нобелевскую премию. Известно, что Бантинг полностью соглашался с теорией Соболева.

Немного анатомии

Поджелудочная железа уникальна по своему строению. Имеется в виду то, что она одновременно и эндокринная железа, и экзокринная. Экзофункция ее заключена в участии в пищеварении. Она производит ценные пищеварительные ферменты – протеазы, амилазы и липазы, которые по протокам выделяются в ее полость. Экзокринная часть занимает 95% всей площади железы.

И только 5% приходится на островки Лангерганса. Это указывает на мощность железы и ее огромную работу в организме. Островки локализованы по всему периметру. 5% – это миллионы островков, хотя их суммарная масса всего 2 г.

Каждый островок содержит клетки А, В, D, РР. Они все производят свои соединения, участвующие в обмене БЖУ из поступающей пищи. Синтез инсулина происходит в В-клетках.

Как это происходит

Детальный процесс продукции инсулина точно не установлен и сегодня. По этой причине СД относится к неизлечимым патологиям. При установлении механизма образования инсулина можно будет управлять и диабетом, изначально влияя на процесс синтеза инсулина.

Сложность в многоэтапности процесса. При нем происходит несколько преобразований веществ, в результате которых неактивный инсулин становится активным. Схема при упрощении: предшественник – препроинсулин – проинсулин – инсулин активный.

Функции инсулина

Инсулин формирует некоторые механизмы ферментации в клетках, поддерживая метаболизм. Он при выделении повышает поступление и использование глюкозы тканями, хранение ее мышцами и печенью и жировой тканью.

Главное его предназначение – добиться нормогликемии. Для этого глюкозу нужно куда-то распределить, поэтому инсулин и повышает способность клеток глюкозу усваивать, активирует ферменты для ее гликолиза, повышает интенсивность синтеза гликогена, который идет в печень и мышцы, снижает глюконеогенез в печени, при котором запасы глюкозы в печени уменьшаются.

Анаболические функции

К анаболическим функциям можно отнести:

  1. Увеличение способности клеток к захвату аминокислот (лейцина и валина).
  2. Повышение поставки минералов в клетки – K, Ca, Mg, P.
  3. Активация синтеза белков и дублирование ДНК.
  4. Участие в процессе образования сложных эфиров (этерификация) из жирных кислот, необходимых для появления триглицеридов. Антикатаболическая функция.
  5. Снижение распада белков блокированием процесса их разложения до аминокислот (гидролиз).
  6. Уменьшение разложения липидов (липолиз, в результате чего обычно жирные кислоты поступают в кровь).

Элиминация (выведение) инсулина

Этот процесс происходит в печени и почках. Больше половины его выводится печенью. Здесь имеется особый фермент – инсулиназа, которая инактивирует инсулин путем разрушения его структурных связей до аминокислот. 35% инсулина разлагается в почках. Процесс этот происходит в лизосомах эпителия почечных канальцев.

Инсулин может увеличиваться или уменьшаться в выработке. Это возникает при различных патологиях. Если такие нарушения длительны, развиваются необратимые изменения жизненно важных систем организма.

Взаимодействие глюкозы и инсулина

Глюкоза – вездесущее соединение в тканях организма. Практически в нее превращаются любые поступающие с пищей углеводы. Важнейшее свойство глюкозы – служить источником энергии, особенно ее нехватку сразу отмечают мышцы и мозг.

Для того чтобы не было нехватки глюкозы в клетках, и нужен инсулин. Он выполняет роль ключа для клеток. Без него глюкоза в клетки проникнуть не может, сколько бы сахара вы ни ели. На поверхности клеток есть особые белковые рецепторы для связи с инсулином.

Особой любовью гормон пользуется у миоцитов и адипоцитов (жировые клетки), их и называют инсулинозависимыми. Они составляют почти 70% от всех клеток. Процессы дыхания, кровообращения, движения обеспечиваются ими. Например, мышца без инсулина работать не будет.

Биохимия нейтрализации глюкозы инсулином

Тоже многогранный процесс, складывается поэтапно. Первыми активируются сразу белки – транспортеры, роль которых состоит в захвате молекул глюкозы и переправлении их через мембрану.

Клетка насыщается сахаром. Часть глюкозы направляется в гепатоциты, где превращается в гликоген. Его молекулы уже идут в другие ткани. Что вызывает в организме недостаток инсулина.

Недостаток синтеза инсулина вызывает диабет 1 типа. Если же выработка гормона достаточна, но клетки на него не реагируют вследствие появления у них инсулинорезистентности – развивается СД 2 типа.

Классификация препаратов инсулина

Они бывают комбинированными и одновидовыми. Последние содержат экстракт поджелудочной одного животного.

Комбинированные — сочетают экстракты желез нескольких видов животных. Практически не применяются на сегодня.

По происхождению или видовому признаку инсулин используют человеческий и свиной, крупного рогатого скота или китовый. Они различаются некоторыми аминокислотами. Самый предпочтительный после человеческого – свиной, отличается всего одной аминокислотой.

В России инсулин от крупного рогатого скота не применяют (отличается 3 аминокислотами).

По степени очистки инсулин бывает традиционный (содержит примеси других гормонов поджелудочной), монопиковый (МП) – отфильтрован дополнительно на геле, примесей в нем не более 1•10−3, монокомпонентный (МК) – по восходящей. Последний – самый чистый – 99% очистки (1•10−6 примесей).

Также инсулин различается по началу, пику и длительности действия – он бывает ультракороткий, короткий, средний и пролонгированный – длительный и сверхдлительный. Выбор остается за врачом.

Как восполнить инсулин

Хирургических и физических методов восстановления на сегодня не создано. Возможно применение инсулина только в инъекциях. Поддержать истощенную поджелудочную железу могут и ПССП – они уменьшают гипергликемию. Иногда инсулинотерапию могут дополнить ЗГТ – это способы медикаментозные.

Зато подручных способов воздействия на выработку инсулина существует достаточно: диета со сниженным количеством углеводов, которая подразумевает дробность питания и прием пищи в одинаковое время, частота приема – 5-6 раз в день.

Полезно использование специй, отказ от простых углеводов и переход на сложные с низким ГИ, увеличение клетчатки в рационе, зеленый чай и больше морепродуктов, правильный белок и фитотерапия.

Рекомендуются аэробные упражнения и другая умеренная физическая активность, а это уход от гиподинамии, ожирения, ведь, как известно, физические упражнения помогают избежать множества проблем.

Источник: https://FB.ru/article/388827/sintez-insulina-vyirabotka-struktura-mehanizm-deystviya-vliyanie-na-organizm-neobhodimaya-korrektirovka-meditsinskimi-i-podruchnyimi-sposobami

WikiDiabet.Ru
Добавить комментарий